

The ‘Magic Paradigm’ for
Programming Smart Connected
Devices

Florian Güldenpfennig
New Design University
St. Pölten, Austria
florian.gueldenpfennig@ndu.ac.at

Daniel Dudo
HCI Group, TU Wien
Vienna, Austria
dudo@igw.tuwien.ac.at

Peter Purgathofer
HCI Group, TU Wien
Vienna, Austria
purg@igw.tuwien.aca.t

ABSTRACT
We are surrounded by an increasing number of smart and networked devices. Today much of this
technology is enjoyed by gadget enthusiasts and early adaptors, but in the foreseeable future
many people will become dependent on smart devices and Internet of Things (IoT) applications,
desired or not. To support people with various levels of computer skills in mastering smart
appliances as found, e.g., in smart homes, we propose the ‘magic paradigm’ for programming
networked devices. Our work can be regarded as a playful ‘experiment’ towards democratizing IoT
technology. It explores how we can program interactive behavior by simple pointing gestures using
a tangible ‘magic wand’. While the ‘magic paradigm’ removes barriers in programming by waiving
conventional coding, it simultaneously raises questions about complexity: what kind of tasks can
be addressed by this kind of ‘tangible programming’, and can people handle it as tasks become
complex? We report the design rationale of a prototypical instantiation of the ‘magic paradigm’
including preliminary findings of a first user trial.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s).
CHI’19 Extended Abstracts, May 4-9, 2019, Glasgow, Scotland, UK.
© 2019 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-5971-9/19/05.
DOI: https://doi.org/10.1145/3290607.3312892

For a demo of the concept, please visit
https://youtu.be/UbnWZnnIPfw

Figure 1: Combining light (A for actor)
with push button (S for sensor) using the
‘magic wand’ (W). Module (M) can be
used for optional settings like delays.

The idea of the ‘magic paradigm’ is to
connect or program smart networks of
sensors and actors by simple pointing
gestures. In the above image (Fig. 1), a light
(A) is programmed to be switched on when a
push button is pressed (S). This program is
set up simply by pointing from the button to
the light (represented by red token A) with
the ‘magic wand’ (W). For more complex
programs, the user can point the ‘magic
wand’ at additional modifier modules (M),
for example, for setting an additional time
delay or for inverting actions.
The user-goal of our research is to enable
people to program and configure smart
objects without coding. From a design
research or scientific perspective, we want to
explore how much complexity can be
handled by this kind of ‘tangible
programming’. For this reason, we provide
participants with various sensor, actor, and
modifier modules in order to successively
increase the complexity of programming
challenges and to observe their performance
during these tasks.

KEYWORDS
Smart objects; Internet of Things; programming; sensor actor networks; tangible computing;

1 INTRODUCTION
The emergence of small and networked computing units in daily life has been described with

many notions, for example, ubiquitous computing, ambient intelligence or, more recently, the
Internet of Things (IoT). While first thought experiments about smart environments and smart
objects date back several decades, many of these early technological visions today reach the
market and thereby our workspaces and homes [2].
As these new technologies concern most of us, desired or not, research in HCI started to
investigate how IoT and related smart applications can be introduced to broader audiences so that
as many people as possible can understand and benefit from this new technology. For example,
Berger et al. [2] introduced as sensor toolkit geared towards the participatory design of IoT in the
home. It allowed participants to distribute mobile sensors in the house, collect data and analyze it.
Another effort into democratizing smart connected devices was proposed by Lefeuvre et al., who
created a pair of cubes with built-in sensors and actors [5]. These cubes were used in co-design
sessions to inform people with visual impairments about novel technological design opportunities
for addressing their needs and provided this user group with first-hand user experiences.
The motivation of our work too is to enable people to make the best use of the IoT and related
technologies. However, we are not so much interested in introducing them to novel smart systems.
Rather, we are interested in how people can configure their smart technology on their own to get
the most out of it. Hence, our aim is to allow people with various levels of computer skills to
control and program their smart connected devices, e.g., in the context of the IoT and smart home
automation. To this end, we explore how people can utilize ‘tangible computing’ in order to waive
the need for writing code when programming networks of connected appliances. We therefore
propose the ‘magic paradigm’, which affords programming by means of simple pointing gestures
using a smart ‘magic wand’ (see Fig. 1). In this paper, we motivate this idea and its underlying
design rationale, and we present preliminary results of a first user study.

2 MOTIVATION OF THE ‘MAGIC PARADIGM’ AND ‘TANGIBLE PROGRAMMING’
During the last decade, there have been various explorations of new paradigms for

programming computers and for teaching programming skills, both within and outside the realm
of the IoT and smart devices. Scratch [6], e.g., is a popular visual programming language, where the
users manipulate visual elements instead of typing code. It constitutes a suitable educational tool
for beginners and for teaching children programming. Melcer and Isbister [8] created a tangible
version of such an element-based programming environment where the users physically arranged
chains of building-blocks to create programs/games. There are countless additional experimental
approaches, which we cannot mention here due to space. A recent TOCHI call for participation
about “end-user development for the IoT” hints at the high actuality of the topic [7].

Technical notes: implementation of
the magic programming kit (MPK)

The MPK is comprised of active
computerized modules and passive modules.
The latter are circular tokens with integrated
RFID chips (Fig. 2). The active modules are
either rectangular or cylindrical devices (e.g.,
the ‘magic wand’) with integrated
microcontrollers (also displayed in Fig. 2).
Active modules contain Arduino Nano
microcontrollers, NRF24L01+ 2.4 GHz wireless
transceivers, batteries and charging circuits
(small off-the-shelf powerbanks), a RFID chip
as well as optional buttons, sensors (e.g.,
light dependent resistor), and actors (e.g.,
piezo buzzer). Each module, active or passive,
can be identified by its integrated RFID chip,
except ‘the magic wand’. This latter device
contains a built-in RFID reader instead of a
chip and serves for identifying whichever
module is pointed at.

An additional Desktop computer (not shown
in any of the figures), which is USB-
connected to an Arduino microcontroller
including NRF24L01+ transceiver, runs a Java
application and coordinates the MPK
network. It is hidden from the user and acts
as a server, implementing the system logic
and controlling an online music radio
station, Twitter account, and power outlet.
E.g., when the ‘magic wand’ is pointed at the
push button module and then to the buzzer
module, it will read the modules’
corresponding RFID tags and communicates
them to the server. In this way, the Java
application is programmed and will trigger
the buzzer module whenever the push button
module is pressed, unless this program is
deleted or overwritten by the user.

As motivated above, we also aim at waiving the need for coding in order to facilitate easy
programming (similar to Scratch [6] and Melcer’s and Isbister’s work [8]). However, in contrast to
existing approaches, we also want to avoid screen-based interaction as far as possible, rely on
‘tangible programming’ only, and focus on the IoT. This motivation of brining tangible computing
to the IoT has also been supported by a 2018 CHI workshop [1]. Hence, in this paper we are neither
interested in visual programming nor in configuring IoT appliances using smartphones and the
like. Instead, we propose the approach of the ‘magic paradigm’ for using pointing gestures with a
smart ‘magic wand’ to assign functionality. In particular, we want to explore how users will handle
tasks with increasing complexity. In this way, we investigate what kind of problems can be solved
in an efficient manner by means of such tangible programming.
We instantiated the ‘magic paradigm’ into a fully implemented prototype (MPK; see Fig. 2 and left
column). This setup allows us to assign different programming tasks to participants and to observe
their performances and reactions. We regard our work as exploratory design research or as a
‘playful experiment’ in interaction design. It connects to some prior explorations, where we
conceived accessible smart devices for senior people [4], and in particular, where we investigated
lead-through programming for smart things [3]. In the latter research, participants recorded
programs (sequences of actions and reactions) by ‘guiding’ the devices (e.g., to connect an alarm
sound with a button, users had to first touch the button and then trigger the alarm manually) [3].
The ‘magic paradigm’ continues this strand of research and constitutes a next or alternative step in
our exploration of programming and democratizing the IoT (now focusing on pointing gestures).

Figure 2: Overview of the magic programming kit (MPK). It consists of wirelessly connected actor-, sensor-
and modifier modules. Programs are configured using the ‘magic wand’. Hidden from users are
application server (coordination of programs and modules; not displayed) and data logger module (for
evaluation purposes during user studies). RFID is used for the wireless identification of the modules.

Figure 3: User test of an early paper
prototype.

In this concept (Fig. 3), users put ‘bits’ (B)
representing different modifiers or actions
(logical operators, “is bigger than”, etc.) into
both ends of a smart handle (H). Programs
were created by pointing at sensor (S) and
actor (A) modules with the handle/bits. A
display in the handle was used for optional
settings. This concept was dismissed early, as
participants thought it was too complex.

Figure 4: Detailed view of light sensor.

Sensor modules that read continuous values
as, e.g., the light sensor (Fig. 4) feature small
displays and push buttons for setting
thresholds. In this way, the user can specify
that an actor should be triggered, if the
sensor reading is below/higher/equal a
specific reading. This acts as a condition.

2.1 Design Rationale
The ‘magic paradigm’ was conceived in the course of a design research process, where we

iteratively examined various ideas. We started with regular brainstorming, design workshops, and
literature review sessions. Promising ideas were implemented as low-fidelity paper prototypes and
given to some participants before more high-fidelity implementations were developed. Hence, the
fully interactive prototype as displayed in Fig. 2 stands at the end of a longer, iterative process,
which weighted alternative concepts and design decisions. On this way, different concepts have
been rejected (see Fig. 3 for an example) and alternative branches of prototypes and research have
been established (e.g., the concept inspired by lead-through programming as presented in [3]).
Eventually, we decided to avoid screen-based interaction as far as possible to provide and explore a
radically novel way of tangible programming through the ‘magic paradigm’.

While the current prototype is fully implemented, this doesn’t imply that we regard it as
finished. However, we believe that at the current state of research, the prototype had to be fully
interactive already in order to probe “valid” participant feedback. We go on to describe its features.

2.2 Features of the ‘Magic Programming Kit’ (MPK)
We mapped as many elements of conventional programming languages as feasible and useful to

our approach of ‘tangible programming’. Indeed, finding a ‘tangible equivalent’ to conventional
programming languages was among the main design challenges of the whole project. Finally, we
managed to propose a design, which can address many problems as posed by, e.g., home
automation, while at the same time remaining the number of necessary controls relatively small.
The ‘magic paradigm’ supports control structures (IF, ELSE, WHILE. See also note about working
with values in left column), logical operators (AND, OR, NOT – e.g., inverting the state of a
module), sensor/actor operations (e.g., turning off an actor), a timer module (Fig. 5) for setting
delays/durations, and system controls specific to the MPK (e.g., system reset, undo last). Some of
these controls and structures are located on the ‘magic board’ (Fig. 2). Others are implemented
‘indirectly’. For example, all sensor modules that are scanned in a row with the ‘magic wand’ are
automatically linked by an AND operator: should a user point the wand at sensor 1 and then at
sensor 2 and then at actor 1, the system would be programmed as ‘IF sensor 1 AND sensor 2 then
actor 1’. Should the user want to establish the program ‘IF sensor 1 OR sensor 2 then actor 1’, the
corresponding pointing sequence would be sensor 1, actor 1, ‘add program’ token, sensor 2, actor 1.
In other words, ‘add program’ is used for bundling groups (or ‘mini-programs’) of sensors and
actors, which are then connected by a logical OR.
At the present time, we implemented five sensor and five actor modules as shown in Fig. 2. Note,
some of the actors are represented by RFID tokens (Fig. 2). That is, the actor (e.g., Twitter account,
online radio station, power outlet, light bulb) is not housed inside the module directly. Instead, the
corresponding action will be triggered wirelessly at a different location by the system server (e.g., a
remote-controlled power outlet with a lamp will be turned on). In a real world situation, all such
smart objects could be marked with RFID tokens; e.g., each lamp could feature a light token. In this
way, the users know which objects can be scanned with the wand and incorporated into programs.

User trial: tasks given to participants

TASK 1: Post current temperature on Twitter
IF above 23 degrees.

TASK 2: Turn on/off lamp with the switch OR
turn on/off buzzer with the push button

TASK 3: IF room is dark, turn on lamp for 6s.

TASK 4: IF the button was pushed, wait for 4s
then turn on the buzzer for the duration of 4s.
In addition, turn on lamp WHILE the button is
NOT pushed.

TASK 5: Turn on/off the power outlet with the
switch AND add an “emergency button”. I.e., IF
the button is pressed, the power outlet should
be turned off regardless of the switch state.

Task 1-5 were given to a first group of
ten participants. These tasks were
carefully designed to feature different
degrees of complexity/difficulty and to
involve all essential features of the
‘magic programming kit’ (cf. section 2.2).
E.g., the tasks start with simple
sensor/actor combinations, but later
required further modules like the timer
module for Tasks 3 and 4 (see Fig. 5).

Figure 5: Timer module for setting
delays, durations or points in time.

3 PRELIMINARY USER FEEDBACK
We recruited ten participants with either high (P1-P7) or low computer skills (P8-P10) to

compare their performance and experience with the MPK. Seven people were first-semester
computer science students (5 males, 2 females, avg age=23.0yrs) with a strong interest in
technology. Three people were older non-technicians (56yr/male, 59yr/male, 60yr/female) with little
experience with computers. Participants were recruited during an open house day of our research
institute or via our extended social networks. There was no financial remuneration.
We were primarily interested in a) whether the participants could understand ‘tangible
programming’, b) how they performed during different tasks, c) how they experienced the system.
To this end, we created five tasks (see left column) that were given to the participants in written
form, after they have received an explanation and demonstration of the MPK. They were then
requested to solve the tasks, to speak out loud, but not to ask for assistance. They could take as
much time as they wanted, and we used the data logger module for recording statistics (Fig. 6).

Results: There were significant differences between skilled and inexperienced computer users.
As evident from Fig. 6, the skilled users were much quicker in solving all tasks. Nevertheless, there
was a shared enthusiasm across both groups. The participants showed great interest in our project
and welcomed our ‘experimental’ effort in democratizing technology. The less computer-affine
participants (P8-P10) did not get frustrated. Rather, they were excited about novel possibilities
brought by technology, and indeed, described the user experience of the MPK as “magical” (P10).
To little surprise, more difficult tasks (e.g., 4 and 5) took a longer time and they provoked more
errors due to the increase of more complex interactions. The left column on the next page provides
a brief summary about common difficulties as well as advantages of the ‘magic paradigm’ as
observed in the study. In sum, the ‘magic paradigm’ appeared to be very appropriate for
programming simple tasks, while more difficult challenges gradually began to diminish the
advantages of ‘tangible programming’.

Figure 6: Performance of participants (time until task completed in seconds). Participants P1-P7:
skilled computer users. P8-P10: little prior experience with computers.

Problems of the ‘magic paradigm’
RFID identification failed relatively often
due to weak signals. At times, this was
irritating the participants and they had to
scan modules several times.

Participants were often insecure whether the
order of modules that were incorporated
into programs by pointing with the wand
mattered. (However, they could relatively
quickly sort this out by ‘trial and error’).

The senior users did not understand the
difference between AND/OR immediately.
Also, initially they had problems in
understanding the difference between
delays and durations in Task 4.

Advantages of the ‘magic paradigm’
Still, the senior participants too described the
‘magic paradigm’ as intuitive, and they
engaged with it positively.

Consequently, in particular the senior
participants reported that a technology like
MPK would make them feel empowered: “It
is amazing to able to set up such
technological stuff. Usually I find stuff like
this intimidating, and I ask someone else to
do it for me. But it actually feels exciting to
solve such things on my own” (P9).

Limitations of this work-in-progress
The user observations were made on a very
short time scale, in lab situations with
predefined tasks. Hence, the paper contains
only very preliminary user data from a small
number of participants. Longer observations,
ideally in natural situations, and detailed
qualitative/quantitative analysis are needed.

4 DISCUSSION AND FUTURE WORK
We proposed the ‘magic paradigm’ as an experimental approach for programming IoT and

related applications of connected smart objects. Together with prior work [3], it constitutes our
efforts in exploring means for ‘tangible programming’. This effort is characterized by iterative
prototyping and by playing with different ideas. We believe that this kind of design-based
approach is appropriate, if not necessary, for exploring an endeavor like this where interactivity is
a key element. Different variants or design decision can have a huge impact on how the users
understand the system and what they can do with it. As we learnt during this process, mapping
elements of conventional programming approaches to ‘tangible computing’ is a non-trivial
problem. Users should be enabled to solve a variety of different tasks, while at the same time
programming procedures should remain as simple as possible.
Finding this balance turned out to be the core challenge, precisely because our primary motivation
was to come up with a solution for programming and configuring the IoT that can be used by
many people, including those with little skills in computers. We argue that we partially
accomplished this in the ‘magic paradigm’, even though the young computer science students
outperformed the group of senior users. Indeed, some of the tasks were quite hard to solve, and it
took the senior users often more than five minutes. Still, we regard this as a success, because for
one thing, everyone solved the tasks in the end, and for another, several minutes is relatively little
time when setting up complex technological systems. Furthermore, we like to emphasize that by
no means we regard the problem of democratizing the programming of IoT environments as
‘solved’. Rather, our work constitutes a playful exploration of new ideas, aimed at pushing
boundaries and at inspiring further research.
Our next challenge is to collate the design explorations from this paper and our older work [3] to
be able to draw broader conclusions and design implications.

REFERENCES
[1] Leonardo Angelini, et al. 2018. Internet of Tangible Things: Workshop on Tangible Interaction with the Internet of

Things. In Proc CHI'18 EA, ACM, 1-8.
[2] Arne Berger, et al. 2019. Sensing Home: Participatory Exploration of Smart Sensors in the Home. In Social Internet of

Things, A. Soro, M. Brereton and P. Roe Eds. Springer, 123-142.
[3] Florian Güldenpfennig, Daniel Dudo, and Peter Purgathofer. 2016. Towards Thingy Oriented Programming:

Recording Marcos with Tangibles. In Proc TEI'16, ACM, 455-461.
[4] Florian Güldenpfennig and Geraldine Fitzpatrick. 2013. Towards Rapid Technology Probes for Senior People. In

Human Factors in Computing and Informatics, A. Holzinger, et al. Eds. Springer Berlin Heidelberg, 664-671.
[5] Kevin Lefeuvre, et al. 2016. Loaded Dice: Exploring the Design Space of Connected Devices with Blind and Visually

Impaired People. In Proc NordiCHI'16, ACM, 1-10.
[6] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The Scratch

Programming Language and Environment. Trans. Comput. Educ. 10, 4, 1-15.
[7] Panos Markopoulos, Jeffrey Nichols, Fabio Paternò, and Volkmar Pipek. 2017. Editorial: End-User Development for

the Internet of Things. ACM Trans. Comput.-Hum. Interact. 24, 2, 1-3.
[8] Edward F. Melcer and Katherine Isbister. 2018. Bots & (Main)Frames: Exploring the Impact of Tangible Blocks and

Collaborative Play in an Educational Programming Game. In Proc CHI'18, ACM, 1-14.

